17/10/23(月)13:00:13 昼は未... のスレッド詳細
削除依頼やバグ報告は メールフォーム にお願いします。個人情報、名誉毀損、侵害等については積極的に削除しますので、 メールフォーム より該当URLをご連絡いただけると助かります。
画像ファイル名:1508731213915.png 17/10/23(月)13:00:13 No.461176329
昼は未解決問題
1 17/10/23(月)13:03:08 No.461176696
解析学の権化レオンハルト・オイラーですら解決の糸口すら見つけられなかった問題
2 17/10/23(月)13:05:36 No.461176977
4以上の全ての偶数は2つの素数の和として表す事が出来るか?という問い掛け
3 17/10/23(月)13:06:53 No.461177128
チェックしてみるものの数が無限にある系の命題の証明って厄介だよね…
4 17/10/23(月)13:07:48 No.461177241
素数の法則性がわかれば話は簡単なのだから全くわからない
5 17/10/23(月)13:08:31 No.461177328
素数が絡む系の命題は大体強敵
6 17/10/23(月)13:08:33 No.461177330
>チェックしてみるものの数が無限にある系の命題の証明って厄介だよね… わざわざチェックするのは反証になるものだけでいい
7 17/10/23(月)13:09:11 No.461177421
カタギンガ
8 17/10/23(月)13:09:49 No.461177481
それじゃ反証出してみてくださいよ!
9 17/10/23(月)13:10:11 No.461177524
多分現在最高峰のAIを使おうが解けん問題だと思う まだ一線級の数学者の方が解く可能性高そう
10 17/10/23(月)13:11:22 No.461177659
ゴールドバッハ予想という名前の格好良さ
11 17/10/23(月)13:12:02 No.461177732
名前がかっこいい
12 17/10/23(月)13:12:14 No.461177754
23はどうだとおもったら偶数だった
13 17/10/23(月)13:13:14 No.461177866
しかし最初に気付いたゴールドバッハさんも並じゃないと思う 解決はしてないけどさ
14 17/10/23(月)13:13:44 No.461177936
>23はどうだとおもったら偶数だった ダメすぎる…
15 17/10/23(月)13:14:08 No.461177988
よく知らないけど素数の規則が絡む問題が解けたらそこから逆説的に色々わかるの?
16 17/10/23(月)13:14:21 No.461178020
>23はどうだとおもったら偶数だった 奇数だし素数だよ!
17 17/10/23(月)13:14:34 No.461178052
二つっていう縛りが無ければ簡単なのにな
18 17/10/23(月)13:14:45 No.461178066
一応奇数は奇数で3つの素数の和で表せるかもねっていう予想がある 弱いゴールドバッハ予想というなんか情けない名前ではあるが
19 17/10/23(月)13:16:33 No.461178267
>チェックしてみるものの数が無限にある系の命題の証明って厄介だよね… 証明ではなく証拠集めって意味なら超すごいコンピュータ使って超すごい数のこの予想に合致する例を挙げていってるな どんだけ積もうが証明した事にはならないけどこれはこれで楽しい
20 17/10/23(月)13:17:55 No.461178409
>一応奇数は奇数で3つの素数の和で表せるかもねっていう予想がある >弱いゴールドバッハ予想というなんか情けない名前ではあるが 強いほうが証明されれば3足せば解決だからな…
21 17/10/23(月)13:18:08 No.461178445
もしかしたら100の1万倍の100万倍のさらに1億倍の1兆倍までいくといきなり数は法則が変わるかもしれない だから「そうじゃない」と証明するのはめちゃくちゃ難しい であってる?
22 17/10/23(月)13:19:13 No.461178547
あってません
23 17/10/23(月)13:19:53 No.461178612
ある偶数N未満の全ての素数で成り立つとして N-3, N-5,...,N/2+1の全てが素数でないとすると…ってやるのかね
24 17/10/23(月)13:20:23 No.461178657
最初に問い掛けが起きてからの年数経過はフェルマーの最終予想よりも長いのか…
25 17/10/23(月)13:22:00 No.461178852
言ってることは超簡単なのに解決方法がまったく浮かばない
26 17/10/23(月)13:22:54 No.461178958
>言ってることは超簡単なのに解決方法がまったく浮かばない 最初の第一歩ですら普通の人にとっては無理無理すぎる…
27 17/10/23(月)13:24:11 No.461179092
>もしかしたら100の1万倍の100万倍のさらに1億倍の1兆倍までいくといきなり数は法則が変わるかもしれない >だから「そうじゃない」と証明するのはめちゃくちゃ難しい >であってる? そうじゃないと証明するのであれば反例を探しだして示せばいいけど そんなものを地道に探すのが人間業だと無理なのでコンピュータ任せになる ってだけ
28 17/10/23(月)13:25:15 No.461179214
>言ってることは超簡単なのに解決方法がまったく浮かばない 立方体倍積問題とかもそうだし 入り口だけは広そうに見えるんだよな
29 17/10/23(月)13:25:26 No.461179234
>もしかしたら100の1万倍の100万倍のさらに1億倍の1兆倍までいくといきなり数は法則が変わるかもしれない そういうのって他の事例とかであったことあるの?
30 17/10/23(月)13:26:03 No.461179305
カタギンガ
31 17/10/23(月)13:26:32 No.461179355
>そういうのって他の事例とかであったことあるの? スキューズ数でググれ
32 17/10/23(月)13:27:58 No.461179508
>スキューズ数 この実例があるから「どれだけ証拠を積み上げようが証明にはならない」んだよね…
33 17/10/23(月)13:29:30 No.461179681
>>もしかしたら100の1万倍の100万倍のさらに1億倍の1兆倍までいくといきなり数は法則が変わるかもしれない >そういうのって他の事例とかであったことあるの? そこまででかくはないが オイラー予想ってのでコンピュータ使って反例示されたことはあるよ
34 17/10/23(月)13:30:36 No.461179797
こういう時にWikipediaで調べると だいたい日本語でおkってなる
35 17/10/23(月)13:33:08 No.461180073
x^4+y^4+z^4=w^4 に自然数解が無いと言ったのがレオンハルト・オイラー 2682440^4+15365639^4+18796760^4=20615673^4 が有るよと言ったのがノーム・エルキース
36 17/10/23(月)13:33:44 No.461180145
数学には全宇宙探しても見つからないけど それ以上探せば見つかるみたいな例がたまにある
37 17/10/23(月)13:33:50 No.461180158
>こういう時にWikipediaで調べると >だいたい日本語でおkってなる 数学がそれ自体が一種の言語なので それにちょっと日本語で解説をつけただけのものは数学の論法を知らないと読めないよね…
38 17/10/23(月)13:35:22 No.461180322
>スキューズ数(スキューズすう、Skewes number)は、南アフリカの数学者スタンレー・スキューズ(英語版)が素数の個数に関する研究において用いた、極めて大きな数である。あるいは、π(x) > li(x) を満たす最小の自然数 x を指すこともある。ここに、π(x) は x 以下の素数の個数、li(x) は対数積分である。この意味でのスキューズ数は、1014 から 1.3983 × 10316 の間にあることが知られているが、正確にいくつであるかは不明である。 あーそーゆーことね完全に理解した
39 17/10/23(月)13:37:17 No.461180509
数学者はちょっとおかしい
40 17/10/23(月)13:40:07 No.461180834
大きくなると割り切れないことが少なくなるって人間の人生みたいなんやな
41 17/10/23(月)13:42:46 No.461181120
理論上数学者は水とパンと紙とペンさえあれば問題ない
42 17/10/23(月)13:42:55 No.461181133
簡単に言ってしまえばスキューズ数というのは 10の一兆乗の一兆乗の100億乗桁の数だ
43 17/10/23(月)13:45:09 No.461181338
存在することは証明できたが計算可能ではないって凄まじいな…
44 17/10/23(月)13:50:55 No.461181993
>簡単に言ってしまえばスキューズ数というのは >10の一兆乗の一兆乗の100億乗桁の数だ 下手なPCで表示させようとしたらハングするんじゃねえか 仮に画面に出ても確認もめどそう
45 17/10/23(月)13:52:09 No.461182130
windowsで扱えるのは10の21乗くらいまでじゃなかったか?
46 17/10/23(月)13:52:55 No.461182196
扱おうと思えばメモリいっぱいまで扱えるよ
47 17/10/23(月)13:52:57 No.461182197
>簡単に言ってしまえばスキューズ数というのは >10の一兆乗の一兆乗の100億乗桁の数だ 0並べりゃいいわけじゃねぇだろうよ
48 17/10/23(月)13:53:20 No.461182242
虚空寿司いいよね
49 17/10/23(月)13:54:27 No.461182335
>大きくなると割り切れないことが少なくなるって人間の人生みたいなんやな えっなに?
50 17/10/23(月)13:56:08 No.461182520
盛ればいいと思って超乳にする奴は理解できないよ
51 17/10/23(月)14:01:03 No.461183014
1から順に数えていって出現する素数の出現法則も有るのか無いのかすら未だ不明だからな
52 17/10/23(月)14:03:44 No.461183273
>1から順に数えていって出現する素数の出現法則も有るのか無いのかすら未だ不明だからな ウラムの螺旋とかみてるとすぐにでも法則見つかりそうな感じに見えるのに不思議だ
53 17/10/23(月)14:11:54 No.461184091
素数は暗号化技術にも動員されてるので余り解析されると困るという事情も有るのだ…
54 17/10/23(月)14:14:27 No.461184364
宇宙に存在する原子の数が80桁くらいの数字らしいね
55 17/10/23(月)14:15:50 No.461184520
大数仮説いいよね
56 17/10/23(月)14:22:53 No.461185216
>大きくなると割り切れないことが少なくなるって人間の人生みたいなんやな 逆じゃない?
57 17/10/23(月)14:27:15 No.461185696
おっぱいの半径を極端に大きくすると逆に貧乳になるっていうジョークを思いだした
58 17/10/23(月)14:28:28 No.461185819
曲率な